INDIAN STATISTICAL INSTITUTE, BANGALORE CENTRE B.MATH - Second Year, Second Semester, 2014-15 Statistics - II, Midterm Examination, March 5, 2015 Answer all questions

1. Let X_1 and X_2 be two independent observations from the $\text{Exp}(\lambda)$ distribution with $\lambda > 0$.

(a) Show that $\frac{X_1}{X_1+X_2}$ is an ancillary statistic.

(a) Show using Basu's theorem that $\frac{X_1}{X_1+X_2}$ and $X_1 + X_2$ are independently distributed. [10]

2. Suppose X_1, X_2, \ldots, X_m and Y_1, Y_2, \ldots, Y_n are independent random samples, respectively, from $N(2\mu, 10^2)$ and $N(\mu, 5^2)$, where $-\infty < \mu < \infty$ is the unknown parameter of interest.

(a) What is the probability distribution of $T = (\bar{X} + 2\bar{Y})/4$?

(b) Is T sufficient for μ ?

(c) Find minimal sufficient statistic for μ . Is it complete?

(d) Find the MLE and UMVUE of μ .

[20]

3. Let X_1, \ldots, X_n be a random sample from $Poisson(\lambda), \lambda > 0$.

(a) Find the Fisher information of λ contained in the random sample.

(b) Find the Cramer-Rao lower bound on the variance of an unbiased estimator of $q(\lambda) = \exp(-\lambda)$.

(c) Find the UMVUE of $q(\lambda)$. Does it attain the lower bound given in (b) above? [15]

4. Consider a random sample X_1, X_2, \ldots, X_n from $U(\theta, \theta + 1)$ where $-\infty < \theta < \infty$. Construct a 95% confidence interval for θ which has the form: $[X_{(n)} - (1 - c_2), X_{(1)} - c_1]$ for some constants c_1 and c_2 . [5]